Use pH and pCO2 data from the surface from the North Pacific Ocean to look if there are patterns over time.
Make a prediction about what changes in pH at the ocean surface you may observe as pCO2 of the water changes over time.
Explore the data below to see what you can observe.
Data Tips
When the site loads, you are able to see the full dataset (September 2015-August 2016) of pH and pCO2 data from the Oregon Shelf Surface Mooring in the Coastal Endurance Array. You can see each variable plotted against time in the stacked plots on the right, as well as the variables plotted against one another in the scatter plot on the left. You can interact with the data by:
Selecting a different time period to explore the data in ways that interest you by selecting a section of data in the pH graph (top right) to draw a box over the data points and then moving the highlighted box to the right or left.
Zooming in and out of the data to look at different time scales that interest you by changing the width of your highlighted box section in the pH graph (top right).
As a note, the color denotes the time of year the pH data are from (light purple/pink are from September 2015 through blue/dark purple from August 2016).
Questions for Thought
Orientation Questions
What is the overall range of pH data you are able to observe in this graph?
What is the overall range of pCO2 data you are able to observe in this graph?
Interpretation Questions
What changes or patterns did you observe in the relationship between pH and pCO2 over this time period in the Northern Pacific Ocean?
When did you see these changes or patterns?
What questions do you still have about how pH and pCO2 are related?
Background Information
Click on the images below to learn more about where and how the dataset above was collected.
Dataset Information
The data for this activity was obtained from the following instruments:
The above datasets were downloaded from the OOI data portal, and then down-sampled to hourly intervals. The data presented are from the raw record, that is, they are instantaneous measurements that have not been averaged because that would smooth out the variability in the dataset.