How do hurricanes impact the salinity and turbidity of an estuary?

Bailey, Kendra, and Kenichi

Background

- Storms temporarily alter the physical characteristics of an estuary
 - Freshwater runoff
 - Turbulent waters
- Case study of Hurricane Irene took place in August 28, 2011 in Chesapeake Bay

The datasets and variables

- Buoy 44063 located in the Chesapeake Bay right off the coast of Annapolis, MD
- Meteorological variables as indicators of storm presence:
 - Wind speed
 - Wave height
 - Air pressure
- Ocean data for physical characteristics of the estuary
 - o Salinity
 - Turbidity

Low air pressure reinforces the fact that Hurricane Irene was present, which cause high wind speeds and waves

Low air pressure coincides with high turbidity and low salinity throughout the year

2011

High wind speed, as a proxy for storms, coincides with high turbidity and low salinity

During Hurricane Irene, wind speed spiked. An increase in turbidity followed

Wave height and turbidity spike at similar intervals, while salinity has a lagging inverse effect

As wave height peaks, turbidity also reaches a high. Salinity has a more slow response to the storm

Conclusions

- Salinity has a slower response than turbidity, and has a lagging effect
- Turbid waters take several days to settle after the hurricane passes
- Hurricanes most likely the cause of data loss :(

Future Work

- Add more variables to the analysis
- Look at more storm events
- Compare estuary system to open water
- Investigate how changes in salinity and turbidity impact organisms living there

Acknowledgements/Questions

- Special thanks to Sage Lichtenwalner, Chris Russoniello and Ed Dever
- Rutgers REU Team

